Subspace Restricted Boltzmann Machine
نویسندگان
چکیده
The subspace Restricted Boltzmann Machine (subspaceRBM) is a third-order Boltzmann machine where multiplicative interactions are between one visible and two hidden units. There are two kinds of hidden units, namely, gate units and subspace units. The subspace units reflect variations of a pattern in data and the gate unit is responsible for activating the subspace units. Additionally, the gate unit can be seen as a pooling feature. We evaluate the behavior of subspaceRBM through experiments with MNIST digit recognition task, measuring reconstruction error and classification error.
منابع مشابه
Domain Adaptation for Image Analysis: An Unsupervised Approach Using Boltzmann Machines Trained by Perturbation
In this paper, we apply Restricted Boltzmann Machine and Subspace Restricted Boltzmann Machine to domain adaptation. Moreover, we train these models using the Perturb-and-MAP approach to draw approximate sample from the Gibbs distribution. We evaluate our approach on domain adaptation task between two image corpora: MNIST and Handwritten Character Recognition dataset.
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملApplication of continuous restricted Boltzmann machine to detect multivariate anomalies from stream sediment geochemical data, Korit, East of Iran
Anomaly separation using stream sediment geochemical data has an essential role in regional exploration. Many different techniques have been proposed to distinguish anomalous from study area. In this research, a continuous restricted Boltzmann machine (CRBM), which is a generative stochastic artificial neural network, was used to recognize the mineral potential area in Korit 1:100000 sheet, loc...
متن کاملDeep Nonlinear Metric Learning for Speaker Verification in the I-Vector Space
Speaker verification is the task of determining whether two utterances represent the same person. After representing the utterances in the i-vector space, the crucial problem is only how to compute the similarity of two i-vectors. Metric learning has provided a viable solution to this problem. Until now, many metric learning algorithms have been proposed, but they are usually limited to learnin...
متن کاملUniversal Approximation Results for the Temporal Restricted Boltzmann Machine and the Recurrent Temporal Restricted Boltzmann Machine
The Restricted Boltzmann Machine (RBM) has proved to be a powerful tool in machine learning, both on its own and as the building block for Deep Belief Networks (multi-layer generative graphical models). The RBM and Deep Belief Network have been shown to be universal approximators for probability distributions on binary vectors. In this paper we prove several similar universal approximation resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1407.4422 شماره
صفحات -
تاریخ انتشار 2014